找回密码
 开放注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

搜索
查看: 650|回复: 0

文本相似度-bm25算法原理及实现

[复制链接]
已绑定手机
已实名认证

11

主题

4

回帖

23

牛毛

游客

积分
223
发表于 2019-11-18 17:53:42 | 显示全部楼层 |阅读模式
BM25算法,通常用来作搜索相关性平分。一句话概况其主要思想:对Query进行语素解析,生成语素qi;然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加权求和,从而得到Query与D的相关性得分。

本文整理了多篇有关BM25相关度算法原理形成本文供各位SEOer阅读,内容比较深度也非常的装逼,反正无忧是看不懂。有兴趣的站长可以查看研究一下。

BM25算法



BM25算法原理及实现
原理
BM25算法,通常用来作搜索相关性平分。一句话概况其主要思想:对Query进行语素解析,生成语素qi;然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加权求和,从而得到Query与D的相关性得分。
BM25算法的一般性公式如下:

SEO技术:文本相似度-bm25算法原理及实现

其中,Q表示Query,qi表示Q解析之后的一个语素(对中文而言,我们可以把对Query的分词作为语素分析,每个词看成语素qi。);d表示一个搜索结果文档;Wi表示语素qi的权重;R(qi,d)表示语素qi与文档d的相关性得分。
下面我们来看如何定义Wi。判断一个词与一个文档的相关性的权重,方法有多种,较常用的是IDF。这里以IDF为例,公式如下:

SEO技术:文本相似度-bm25算法原理及实现

SEO技术:文本相似度-bm25算法原理及实现其中,N为索引中的全部文档数,n(qi)为包含了qi的文档数。
根据IDF的定义可以看出,对于给定的文档集合,包含了qi的文档数越多,qi的权重则越低。也就是说,当很多文档都包含了qi时,qi的区分度就不高,因此使用qi来判断相关性时的重要度就较低。
我们再来看语素qi与文档d的相关性得分R(qi,d)。首先来看BM25中相关性得分的一般形式:

SEO技术:文本相似度-bm25算法原理及实现

其中,k1,k2,b为调节因子,通常根据经验设置,一般k1=2,b=0.75;fi为qi在d中的出现频率,qfi为qi在Query中的出现频率。dl为文档d的长度,avgdl为所有文档的平均长度。由于绝大部分情况下,qi在Query中只会出现一次,即qfi=1,因此公式可以简化为:
SEO技术:文本相似度-bm25算法原理及实现
SEO技术:文本相似度-bm25算法原理及实现
从K的定义中可以看到,参数b的作用是调整文档长度对相关性影响的大小。b越大,文档长度的对相关性得分的影响越大,反之越小。而文档的相对长度越长,K值将越大,则相关性得分会越小。这可以理解为,当文档较长时,包含qi的机会越大,因此,同等fi的情况下,长文档与qi的相关性应该比短文档与qi的相关性弱。
综上,BM25算法的相关性得分公式可总结为:

SEO技术:文本相似度-bm25算法原理及实现SEO技术:文本相似度-bm25算法原理及实现
从BM25的公式可以看到,通过使用不同的语素分析方法、语素权重判定方法,以及语素与文档的相关性判定方法,我们可以衍生出不同的搜索相关性得分计算方法,这就为我们设计算法提供了较大的灵活性。


二手等离子切割机   http://www.cnc027.com

您需要登录后才可以回帖 登录 | 开放注册

本版积分规则

帮助|Archiver|小黑屋|通信管理局专项备案号:[2008]238号|NB5社区 ( 皖ICP备08004151号;皖公网安备34010402700514号 )

GMT+8, 2025-4-27 12:12 , Processed in 0.195457 second(s), 31 queries .

Powered by Discuz! X3.5

快速回复 返回顶部 返回列表